SMT實用工藝基礎-SMT概述
作者:博維科技 時間:2018-07-24 13:55
SMT概述
SMT(表面組裝技術)是新一代電子組裝技術。經過20世紀80年代和90年代的迅速發展,已進入成熟期。SMT已經成為一個涉及面廣,內容豐富,跨多學科的綜合性高新技術。最新幾年,SMT又進入一個新的發展高潮,已經成為電子組裝技術的主流。
1.1SMT概述
SMT是無需對印制板鉆插裝孔,直接將處式元器件或適合于表面組裝的微型元件器貼、焊到印制或其他基板表面規定位置上的裝聯技術。
由于各種片式元器件的幾何尺寸和占空間體積比插裝元器件小得多,這種組裝形式具有結構緊湊、體積小、耐振動、抗沖擊、高頻特性好和生產效率高等優點。采用雙面貼裝時,組裝密度的5倍以左右,從而使印制板面積節約了60%-70%,重量減輕90%以上。
SMT在投資類電子產品、軍事裝備領域、計算機、通信設備、彩電調諧器、錄像機、攝像機及袖珍式高檔多波段收音機、隨身聽、傳呼機和手機等幾乎所有的電子產品生產中都得到廣泛應用。SMT是電子裝聯技術的發展方向,已成為世界電子整機組裝技術的主流。
SMT是從厚、薄膜混合電路演變發展而來的。
美國是世界上SMD和SMT最早起源的國家,并一直重視在投資類電子產品和軍事裝備領域發揮SMT高組裝密度和高可靠性能方面的優勢,具有很高的水平。
日本在70年代從美國引進SMD和SMT應用在消費類電子產品領域,并投入世資大力加強基礎材料、基礎技術和推廣應用方面的開發研究工作,從80年代中后期起加速了SMT在產業電子設備領域中的全面推廣應用,僅用四年時間使SMT在計算機和通信設備中的應用數量增長了近30%,在傳真機中增長40%,使日本很快超過了美國,在SMT方面處于世界領先地位。
歐洲各國SMT的起步較晚,但他們重視發展并有較好的工業基礎,發展速度也很快,其發展水平和整機中SMC/SMD的使用效率僅次于日本和美國。80年代以來,新加坡、韓國、香港和臺灣省亞洲四小龍不惜投入巨資,紛紛引進先進技術,使SMT獲得較快的發展。
據飛利浦公司預測,到2010年全球范圍插裝元器件的使用率將由目前和40%下降到10%,反之,SMC/SMD將從60%上升到90%左右。
我國SMT的應用起步于80年代初期,最初從美、日等國成套引進了SMT生產線用于彩電諧器生產。隨后應用于錄像機、攝像機及袖珍式高檔多波段收音機、隨身聽等生產中,近幾年在計算機、通信設備、航空航天電子產品中也逐漸得到應用。
據2000年不完全統計,我國約有40多家企業從事SMC/SMD的生產,全國約有300多家引進了SMT生產線,不同程度的采用了SMT。全國已引進4000-5000臺貼裝機。隨著改革 開放的深入以及加入WTO,近兩年一些美、日、新加坡、臺商已將SMT加工廠搬到了中國,僅2001-2002一年就引進了4000余臺貼裝機。我國將成為SMT世界加工廠的基地。我國SMT發展前景是廣闊的。
1.2 SMT發展動態
SMT總的發展趨勢是:元器件越來越小、組裝密度越來越高、組裝難度也越來越大。最近幾年SMT又進入一個新的發展高潮。為了進一步適應電子設備向短、小、輕、薄方向發展,出現了0210(0.6mm*0.3mm)的CHIP元年、BGA、CSP、FLIP、CHIP、復合化片式元件等新型封裝元器件。由于BGA等元器件技術的發展,非ODS清洗和元鉛焊料的出現,引起了SMT設備、焊接材料、貼裝和焊接工藝的變化,推動電子組裝技術向更高階段發展。SMT發展速度之快,的確令人驚訝,可以說,每年、每月、每天都有變化。
一、元器件
1. SMC――片式元件向小、薄型發展。其尺寸從1206(3.2mm*1.6mm)向0805(2.0mm*1.25mm)-0603(1.6mm*0.8mm)-0402(1.0mm*0.5mm)-0201(0.6mm*0.3mm)發展。
2. SMD――表面組裝器件向小型、薄型和窄引腳間距發展。引腳中心距從1.27向0.635mm-0.5mm-0.4mm及0.3mm發展。
3. 出現了新的封裝形式BGA(球柵陣列,ball grid arrag)、CSP(UBGA)和FILP CHIP(倒裝芯片)。
由于QFP(四邊扁平封裝器件受SMT工藝的限制,0.3mm的引腳間距已經是極限值。而BGA的引腳的球形的,均勻地分布在芯片的底部。BGA和QFP相比最突出的優點首先是I/O數的封裝面積比高,節省了PCB面積,提高了組裝密度。其次是引腳間距較大,有1.5mm、1.27mm和1.00mm,組裝難度下降,加工窗口更大。例:31mm *31mmR BGA 引腳間距為1.5mm時,有400個焊球(I/O);引腳間距為1.0mm時,有900個焊球(I/O)。同樣是31mm*31mm的QFP-208,引腳間距為0.5mm時,只有208條引腳。
BGA無論在性能和價格上都有競爭力,已經在高(I/O)數的器件封裝中起主導作用。
二、窄間距技術(FPT)是SMT發展的必然趨勢
FPT是指將引腳間距在0.635-0.3mm之間的SMD和長*寬小于等于1.6mm*0.8mm的SMC組裝在PCB上的技術。
由于計算機、通信、航空航天等電子技術飛速發燕尾服,促使半導體集成電路的集成度越來越高,SMC越來越小,SMD的引腳間距也越來越窄。目前,0.635mm和0.5mm引腳間距的QFP已成為工業和軍用電子裝備中的通信器件。
三、無鉛焊接技術
為了防止鉛對環境和人體危害,元鉛焊接也迅速地被提到議事日程上,日本已研制出無鉛焊接并應用到實際生產中,美國和歐洲也在加緊研究。由于目前無鉛焊接的焊接溫度較高,因此焊接設、PCB材料及焊盤表面鍍錫的工藝、元器件耐高溫性能及端頭電極工藝、再流焊與波峰焊接工藝等等一系列新技術有待研究和解決。
四、SMT主要設備發展情況
1.印刷機
由于新型SMD不斷出現、組裝密度的提高以及免清洗要求,印刷機的高密度、高精度的提高以及多功能方向發展。目前印刷機大致分為三種檔次:
(1)半自動印刷機
(2)半自動印刷機加視覺識別系統。增加了CCD圖像識別,提高了印刷精度。
(3)全自動印刷機。全自動印刷機除了有自動識別系統外,還有自動更換漏印模板、清洗網板、對QFP器件進行45度角印刷、二維和三維檢查印刷結果(焊膏圖形)等功能。
目前又有PLOWER FLOWER軟料包(DEK擠壓式、MINAMI單向氣功式等)的成功開發與應用。這種方法焊膏是密封式的,適合免清洗、元鉛焊接以及高密度、高速度印刷的要求。
1.貼片機
隨著SMC小型化、SMD多引腳窄間距化和復合式、組合式片式元器件、BGA、CSP、DCA(芯片直接貼裝技術)、以及表面組裝的接插件等新型片式元器件的不斷出現,對貼裝技術的要求越來越高。近年來,各類自動化貼裝機正朝著高速、高精度和多功能方向發展。采用多貼裝頭、多吸嘴以及高分辨率視覺系統等先進技術,使貼裝速度和貼裝精度大大提高。
目前最高的貼裝速度可達到0.06S/Chip元件左右;高精度貼裝機的重復貼裝精度為0.05-0.25mm; 多功能貼片機除了能貼裝0201(0.6mm*0.3mm)元件外,還能貼裝SOIC(小外型集成電路)、PLCC(塑料有引線芯片載體)、窄引線間距QFP、BGA和CSP以及長接插件(150Mm長)等SMD/SMC的能力。
此外,現代的貼片機在傳動結構(Y軸方向由單絲械向雙絲杠發展);元件的對中方式(由機械向激光向全視覺發展);圖像識別(采用高分辨CCD);BGA和CSP的貼裝(采用反射加直射鏡技術);采用鑄鐵機架以減少振動,提高精度,減少磨損;以及增強計算機功能等方面都采用了許多新技術,使操作更加簡便、迅速、直觀和易掌握。
3、再流焊爐
再流焊爐主要有熱板式、紅外、熱風、紅外+熱風和氣相焊等形式。
再流焊熱傳導方式主要有輻射和對流兩種方式。
輻射傳導――主要有紅外爐。其優點是熱效率高,溫度陡度大,易控制溫度曲線,雙面焊接時PCB上、下溫度易控制。其缺點是溫度不均勻;在同一塊PCB上由于器件的顏色和大小不同、其溫度就不同。為了使深顏色和大體積的元器件達到焊接溫度、必須提高焊接溫度,容易造成焊接不良和損壞元器件等缺陷。
對流傳導――主要有熱風爐。其優點是溫度均勻、焊接質量好。缺點是PCB上、上溫差以及沿焊接長度方向的溫度梯度不易控制。
(1)目前再流焊傾向采用熱風小對流方式,在爐子下面采用制冷手段,以保護爐子上、下和長度方向的溫度梯度,從而達到工藝曲線的要求。
(2)是否需要充N2選擇(基于免清洗要求提出的)
充 N2的主要作用是防止高溫下二次氧化,達到提高可焊性的目的。對于什么樣的產品需要充N2,目前還有爭議??偟目雌饋?,無鉛焊接,以及高密度,特別是引腳中心距為0.5mm以下的焊接過程有必要用N2,否則沒有太大必要。另外,如果N2純度低(如普通20PPN)效果不明顯,因此要求N2純度為100PPN。
蒸 蒸汽焊爐有再次興起的趨勢。特別是對電性能要求極高的軍品。
1. 3常用基本術語
SMT――表面組裝技術;
PCB――印制電路板;
SMA――表面組裝組件;
SMC\SMD――片式元件片/片式器件
FPT――窄間距技術。FPT是指將引腳間距在0.635-0.3mm之間的SMD和長*寬小于等于1.6mm*0.8mm的SMC組裝在PCB上的技術。
MELF――園柱形元器件
SOP――羽翼形小外形塑料封裝;
SOJ――J形小外形塑料封裝;
TSOP――薄形小小外塑料封裝;
PLCC――塑料有引線(J形)芯片載體;
QFP――四邊扁平封裝器件;
PQFP――帶角耳的四邊扁平封裝器件;
BGA――球柵陣列(ball grid array);
DCA――芯片直接貼裝技術;
CSP――芯片級封裝(引腳也在器件底下,外形與BGA相同,封裝尺寸BGA小。芯片封裝尺寸與芯片面積比≦1.2稱為CSP);
THC――通孔插裝元器件。